是否存在用于检测有效正则表达式的正则表达式?

是否可以使用另一个正则表达式检测有效的正则表达式?如果是这样,请在下面提供示例代码。

答案

/
^                                             # start of string
(                                             # first group start
  (?:
    (?:[^?+*{}()[\]\\|]+                      # literals and ^, $
     | \\.                                    # escaped characters
     | \[ (?: \^?\\. | \^[^\\] | [^\\^] )     # character classes
          (?: [^\]\\]+ | \\. )* \]
     | \( (?:\?[:=!]|\?<[=!]|\?>)? (?1)?? \)  # parenthesis, with recursive content
     | \(\? (?:R|[+-]?\d+) \)                 # recursive matching
     )
    (?: (?:[?+*]|\{\d+(?:,\d*)?\}) [?+]? )?   # quantifiers
  | \|                                        # alternative
  )*                                          # repeat content
)                                             # end first group
$                                             # end of string
/
/^((?:(?:[^?+*{}()[\]\\|]+|\\.|\[(?:\^?\\.|\^[^\\]|[^\\^])(?:[^\]\\]+|\\.)*\]|\((?:\?[:=!]|\?<[=!]|\?>)?(?1)??\)|\(\?(?:R|[+-]?\d+)\))(?:(?:[?+*]|\{\d+(?:,\d*)?\})[?+]?)?|\|)*)$/
^                                         # start of string
(?:
  (?: [^?+*{}()[\]\\|]+                   # literals and ^, $
   | \\.                                  # escaped characters
   | \[ (?: \^?\\. | \^[^\\] | [^\\^] )   # character classes
        (?: [^\]\\]+ | \\. )* \]
   | \( (?:\?[:=!]
         | \?<[=!]
         | \?>
         | \?<[^\W\d]\w*>
         | \?'[^\W\d]\w*'
         )?                               # opening of group
     (?<N>)                               #   increment counter
   | \)                                   # closing of group
     (?<-N>)                              #   decrement counter
   )
  (?: (?:[?+*]|\{\d+(?:,\d*)?\}) [?+]? )? # quantifiers
| \|                                      # alternative
)*                                        # repeat content
$                                         # end of string
(?(N)(?!))                                # fail if counter is non-zero.
^(?:(?:[^?+*{}()[\]\\|]+|\\.|\[(?:\^?\\.|\^[^\\]|[^\\^])(?:[^\]\\]+|\\.)*\]|\((?:\?[:=!]|\?<[=!]|\?>|\?<[^\W\d]\w*>|\?'[^\W\d]\w*')?(?<N>)|\)(?<-N>))(?:(?:[?+*]|\{\d+(?:,\d*)?\})[?+]?)?|\|)*$(?(N)(?!))

不太可能。

try..catch或任何您提供的语言中对其进行评估。

不,如果您严格地讲正则表达式,并且不包括一些实际上不是上下文相关语法的正则表达式实现。

正则表达式有一个局限性,这使得不可能编写与所有正则表达式都匹配的正则表达式。您无法匹配实现,例如配对的括号。正则表达式使用许多这样的构造,以 [] 为例。只要有 [必须有一个匹配项]。对于正则表达式 “[。*]” 足够简单。

正则表达式不可能嵌套的原因是它们可以嵌套。如何编写与嵌套括号匹配的正则表达式?答案是,您不能没有无限长的正则表达式。您可以通过蛮力匹配任意数量的嵌套括号,但不能匹配任意长的嵌套括号。

此功能通常称为计数(您正在计数嵌套的深度)。根据定义,正则表达式没有计数能力。

编辑:最终写了一篇关于此的博客文章: 正则表达式限制

好问题。真正的常规语言无法确定任意深度嵌套的结构良好的括号。即,如果您的字母包含 '(' 和 ')',则目标是确定其中的字符串是否具有格式正确的匹配括号。由于这是正则表达式的必要要求,因此答案是否定的。

但是:如果您放宽了需求并添加了递归,则可以执行此操作。原因是递归可以充当 “堆栈”,让您通过推入该堆栈来 “计数” 当前的嵌套深度。

Russ Cox 写了一篇有关正则表达式引擎实现的精彩论文: 正则表达式匹配可以简单快速

不,如果您使用标准正则表达式。

原因是您无法满足常规语言的泵送引理 。抽运引理指出,如果存在数字 N,则属于语言 L 的字符串是规则的,这样,在将该字符串分为 3 个子字符串 xyz 之后,使得 | x |> = 1 && | xy | <= N,您可以重复 y 根据需要多次,整个字符串仍属于 L。

抽运引理的结果是,您不能使用a^Nb^Mc^N形式a^Nb^Mc^N常规字符串,即,两个长度相同的子字符串被另一个字符串分隔。以任何方式将此类字符串拆分为 xy 和 z,如果不获取带有不同数量 “a” 和 “c” 的字符串,就无法“抽取” y,从而保留了原始语言。例如,正则表达式中的括号就是这种情况。

SKIP :
{
    " "
|   "\r"
|   "\t"
|   "\n"
}
TOKEN : 
{
    < DIGITO: ["0" - "9"] >
|   < MAYUSCULA: ["A" - "Z"] >
|   < MINUSCULA: ["a" - "z"] >
|   < LAMBDA: "LAMBDA" >
|   < VACIO: "VACIO" >
}

IRegularExpression Expression() :
{
    IRegularExpression r; 
}
{
    r=Alternation() { return r; }
}

// Matchea disyunciones: ER | ER
IRegularExpression Alternation() :
{
    IRegularExpression r1 = null, r2 = null; 
}
{
    r1=Concatenation() ( "|" r2=Alternation() )?
    { 
        if (r2 == null) {
            return r1;
        } else {
            return createAlternation(r1,r2);
        } 
    }
}

// Matchea concatenaciones: ER.ER
IRegularExpression Concatenation() :
{
    IRegularExpression r1 = null, r2 = null; 
}
{
    r1=Repetition() ( "." r2=Repetition() { r1 = createConcatenation(r1,r2); } )*
    { return r1; }
}

// Matchea repeticiones: ER*
IRegularExpression Repetition() :
{
    IRegularExpression r; 
}
{
    r=Atom() ( "*" { r = createRepetition(r); } )*
    { return r; }
}

// Matchea regex atomicas: (ER), Terminal, Vacio, Lambda
IRegularExpression Atom() :
{
    String t;
    IRegularExpression r;
}
{
    ( "(" r=Expression() ")" {return r;}) 
    | t=Terminal() { return createTerminal(t); }
    | <LAMBDA> { return createLambda(); }
    | <VACIO> { return createEmpty(); }
}

// Matchea un terminal (digito o minuscula) y devuelve su valor
String Terminal() :
{
    Token t;
}
{
    ( t=<DIGITO> | t=<MINUSCULA> ) { return t.image; }
}
@preg_match($regexToTest, '');

Paul McGuire 的以下示例最初来自 pyparsing Wiki,但现在仅可通过 Wayback Machine 获得 ,它给出了解析某些正则表达式的语法,目的是返回匹配字符串集。因此,它会拒绝那些包含无限重复项的 re,例如 “+” 和 “*”。但是它应该给您一个关于如何构造将处理 re 的解析器的想法。

# 
# invRegex.py
#
# Copyright 2008, Paul McGuire
#
# pyparsing script to expand a regular expression into all possible matching strings
# Supports:
# - {n} and {m,n} repetition, but not unbounded + or * repetition
# - ? optional elements
# - [] character ranges
# - () grouping
# - | alternation
#
__all__ = ["count","invert"]

from pyparsing import (Literal, oneOf, printables, ParserElement, Combine, 
    SkipTo, operatorPrecedence, ParseFatalException, Word, nums, opAssoc,
    Suppress, ParseResults, srange)

class CharacterRangeEmitter(object):
    def __init__(self,chars):
        # remove duplicate chars in character range, but preserve original order
        seen = set()
        self.charset = "".join( seen.add(c) or c for c in chars if c not in seen )
    def __str__(self):
        return '['+self.charset+']'
    def __repr__(self):
        return '['+self.charset+']'
    def makeGenerator(self):
        def genChars():
            for s in self.charset:
                yield s
        return genChars

class OptionalEmitter(object):
    def __init__(self,expr):
        self.expr = expr
    def makeGenerator(self):
        def optionalGen():
            yield ""
            for s in self.expr.makeGenerator()():
                yield s
        return optionalGen

class DotEmitter(object):
    def makeGenerator(self):
        def dotGen():
            for c in printables:
                yield c
        return dotGen

class GroupEmitter(object):
    def __init__(self,exprs):
        self.exprs = ParseResults(exprs)
    def makeGenerator(self):
        def groupGen():
            def recurseList(elist):
                if len(elist)==1:
                    for s in elist[0].makeGenerator()():
                        yield s
                else:
                    for s in elist[0].makeGenerator()():
                        for s2 in recurseList(elist[1:]):
                            yield s + s2
            if self.exprs:
                for s in recurseList(self.exprs):
                    yield s
        return groupGen

class AlternativeEmitter(object):
    def __init__(self,exprs):
        self.exprs = exprs
    def makeGenerator(self):
        def altGen():
            for e in self.exprs:
                for s in e.makeGenerator()():
                    yield s
        return altGen

class LiteralEmitter(object):
    def __init__(self,lit):
        self.lit = lit
    def __str__(self):
        return "Lit:"+self.lit
    def __repr__(self):
        return "Lit:"+self.lit
    def makeGenerator(self):
        def litGen():
            yield self.lit
        return litGen

def handleRange(toks):
    return CharacterRangeEmitter(srange(toks[0]))

def handleRepetition(toks):
    toks=toks[0]
    if toks[1] in "*+":
        raise ParseFatalException("",0,"unbounded repetition operators not supported")
    if toks[1] == "?":
        return OptionalEmitter(toks[0])
    if "count" in toks:
        return GroupEmitter([toks[0]] * int(toks.count))
    if "minCount" in toks:
        mincount = int(toks.minCount)
        maxcount = int(toks.maxCount)
        optcount = maxcount - mincount
        if optcount:
            opt = OptionalEmitter(toks[0])
            for i in range(1,optcount):
                opt = OptionalEmitter(GroupEmitter([toks[0],opt]))
            return GroupEmitter([toks[0]] * mincount + [opt])
        else:
            return [toks[0]] * mincount

def handleLiteral(toks):
    lit = ""
    for t in toks:
        if t[0] == "\\":
            if t[1] == "t":
                lit += '\t'
            else:
                lit += t[1]
        else:
            lit += t
    return LiteralEmitter(lit)    

def handleMacro(toks):
    macroChar = toks[0][1]
    if macroChar == "d":
        return CharacterRangeEmitter("0123456789")
    elif macroChar == "w":
        return CharacterRangeEmitter(srange("[A-Za-z0-9_]"))
    elif macroChar == "s":
        return LiteralEmitter(" ")
    else:
        raise ParseFatalException("",0,"unsupported macro character (" + macroChar + ")")

def handleSequence(toks):
    return GroupEmitter(toks[0])

def handleDot():
    return CharacterRangeEmitter(printables)

def handleAlternative(toks):
    return AlternativeEmitter(toks[0])


_parser = None
def parser():
    global _parser
    if _parser is None:
        ParserElement.setDefaultWhitespaceChars("")
        lbrack,rbrack,lbrace,rbrace,lparen,rparen = map(Literal,"[]{}()")

        reMacro = Combine("\\" + oneOf(list("dws")))
        escapedChar = ~reMacro + Combine("\\" + oneOf(list(printables)))
        reLiteralChar = "".join(c for c in printables if c not in r"\[]{}().*?+|") + " \t"

        reRange = Combine(lbrack + SkipTo(rbrack,ignore=escapedChar) + rbrack)
        reLiteral = ( escapedChar | oneOf(list(reLiteralChar)) )
        reDot = Literal(".")
        repetition = (
            ( lbrace + Word(nums).setResultsName("count") + rbrace ) |
            ( lbrace + Word(nums).setResultsName("minCount")+","+ Word(nums).setResultsName("maxCount") + rbrace ) |
            oneOf(list("*+?")) 
            )

        reRange.setParseAction(handleRange)
        reLiteral.setParseAction(handleLiteral)
        reMacro.setParseAction(handleMacro)
        reDot.setParseAction(handleDot)

        reTerm = ( reLiteral | reRange | reMacro | reDot )
        reExpr = operatorPrecedence( reTerm,
            [
            (repetition, 1, opAssoc.LEFT, handleRepetition),
            (None, 2, opAssoc.LEFT, handleSequence),
            (Suppress('|'), 2, opAssoc.LEFT, handleAlternative),
            ]
            )
        _parser = reExpr

    return _parser

def count(gen):
    """Simple function to count the number of elements returned by a generator."""
    i = 0
    for s in gen:
        i += 1
    return i

def invert(regex):
    """Call this routine as a generator to return all the strings that
       match the input regular expression.
           for s in invert("[A-Z]{3}\d{3}"):
               print s
    """
    invReGenerator = GroupEmitter(parser().parseString(regex)).makeGenerator()
    return invReGenerator()

def main():
    tests = r"""
    [A-EA]
    [A-D]*
    [A-D]{3}
    X[A-C]{3}Y
    X[A-C]{3}\(
    X\d
    foobar\d\d
    foobar{2}
    foobar{2,9}
    fooba[rz]{2}
    (foobar){2}
    ([01]\d)|(2[0-5])
    ([01]\d\d)|(2[0-4]\d)|(25[0-5])
    [A-C]{1,2}
    [A-C]{0,3}
    [A-C]\s[A-C]\s[A-C]
    [A-C]\s?[A-C][A-C]
    [A-C]\s([A-C][A-C])
    [A-C]\s([A-C][A-C])?
    [A-C]{2}\d{2}
    @|TH[12]
    @(@|TH[12])?
    @(@|TH[12]|AL[12]|SP[123]|TB(1[0-9]?|20?|[3-9]))?
    @(@|TH[12]|AL[12]|SP[123]|TB(1[0-9]?|20?|[3-9])|OH(1[0-9]?|2[0-9]?|30?|[4-9]))?
    (([ECMP]|HA|AK)[SD]|HS)T
    [A-CV]{2}
    A[cglmrstu]|B[aehikr]?|C[adeflmorsu]?|D[bsy]|E[rsu]|F[emr]?|G[ade]|H[efgos]?|I[nr]?|Kr?|L[airu]|M[dgnot]|N[abdeiop]?|Os?|P[abdmortu]?|R[abefghnu]|S[bcegimnr]?|T[abcehilm]|Uu[bhopqst]|U|V|W|Xe|Yb?|Z[nr]
    (a|b)|(x|y)
    (a|b) (x|y)
    """.split('\n')

    for t in tests:
        t = t.strip()
        if not t: continue
        print '-'*50
        print t
        try:
            print count(invert(t))
            for s in invert(t):
                print s
        except ParseFatalException,pfe:
            print pfe.msg
            print
            continue
        print

if __name__ == "__main__":
    main()