如何计算列表项的出现?

给定一个项目,我如何计算它在 Python 列表中的出现次数?

答案

如果您只想要一项的计数,请使用count方法:

>>> [1, 2, 3, 4, 1, 4, 1].count(1)
3

如果要计数多个项目,请不要使用此选项。循环调用count需要为每个count调用单独遍历列表,这可能会对性能造成灾难性影响。如果您要计算所有项目,甚至只是多个项目,请使用Counter ,如其他答案中所述。

如果您使用的是 Python 2.7 或 3.x,并且希望每个元素的出现次数,请使用Counter

>>> from collections import Counter
>>> z = ['blue', 'red', 'blue', 'yellow', 'blue', 'red']
>>> Counter(z)
Counter({'blue': 3, 'red': 2, 'yellow': 1})

计算列表中一项的出现

要仅计算一个列表项的出现次数,可以使用count()

>>> l = ["a","b","b"]
>>> l.count("a")
1
>>> l.count("b")
2

计算列表中所有项目的出现次数也称为 “对列表进行计数” 或创建计数计数器。

用 count()计算所有项目

要计算项目在l的出现次数,只需使用列表推导和count()方法即可

[[x,l.count(x)] for x in set(l)]

(或类似地使用字典dict((x,l.count(x)) for x in set(l))

例:

>>> l = ["a","b","b"]
>>> [[x,l.count(x)] for x in set(l)]
[['a', 1], ['b', 2]]
>>> dict((x,l.count(x)) for x in set(l))
{'a': 1, 'b': 2}

用 Counter()计算所有项目

另外, collections库中有更快的Counter

Counter(l)

例:

>>> l = ["a","b","b"]
>>> from collections import Counter
>>> Counter(l)
Counter({'b': 2, 'a': 1})

计数器快多少?

我检查了Counter来计算清单的速度。我用n的几个值尝试了这两种方法,看来Counter快了约 2 的常数。

这是我使用的脚本:

from __future__ import print_function
import timeit

t1=timeit.Timer('Counter(l)', \
                'import random;import string;from collections import Counter;n=1000;l=[random.choice(string.ascii_letters) for x in range(n)]'
                )

t2=timeit.Timer('[[x,l.count(x)] for x in set(l)]',
                'import random;import string;n=1000;l=[random.choice(string.ascii_letters) for x in range(n)]'
                )

print("Counter(): ", t1.repeat(repeat=3,number=10000))
print("count():   ", t2.repeat(repeat=3,number=10000)

并输出:

Counter():  [0.46062711701961234, 0.4022796869976446, 0.3974247490405105]
count():    [7.779430688009597, 7.962715800967999, 8.420845870045014]

获取字典中每个项目出现次数的另一种方法是:

dict((i, a.count(i)) for i in a)

list.count(x)返回x在列表中出现的次数

请参阅: http : //docs.python.org/tutorial/datastructures.html#more-on-lists

给定一个项目,我如何计算它在 Python 列表中的出现次数?

这是一个示例列表:

>>> l = list('aaaaabbbbcccdde')
>>> l
['a', 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'e']

list.count

list.count方法

>>> l.count('b')
4

这适用于任何列表。元组也有这种方法:

>>> t = tuple('aabbbffffff')
>>> t
('a', 'a', 'b', 'b', 'b', 'f', 'f', 'f', 'f', 'f', 'f')
>>> t.count('f')
6

collections.Counter

然后是 collections.Counter。您可以将任何可迭代的对象转储到 Counter 中,而不仅仅是列表,并且 Counter 将保留元素计数的数据结构。

用法:

>>> from collections import Counter
>>> c = Counter(l)
>>> c['b']
4

计数器基于 Python 字典,它们的键是元素,因此键必须是可哈希的。它们基本上就像允许多余元素进入的集合。

collections.Counter进一步使用

您可以从计数器中添加或减去可迭代项:

>>> c.update(list('bbb'))
>>> c['b']
7
>>> c.subtract(list('bbb'))
>>> c['b']
4

您还可以使用计数器进行多组操作:

>>> c2 = Counter(list('aabbxyz'))
>>> c - c2                   # set difference
Counter({'a': 3, 'c': 3, 'b': 2, 'd': 2, 'e': 1})
>>> c + c2                   # addition of all elements
Counter({'a': 7, 'b': 6, 'c': 3, 'd': 2, 'e': 1, 'y': 1, 'x': 1, 'z': 1})
>>> c | c2                   # set union
Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1, 'y': 1, 'x': 1, 'z': 1})
>>> c & c2                   # set intersection
Counter({'a': 2, 'b': 2})

为什么不熊猫呢?

另一个答案表明:

为什么不使用熊猫?

熊猫是一个公共库,但不在标准库中。根据需要添加它并非易事。

在列表对象本身以及标准库中都有针对此用例的内置解决方案。

如果您的项目不再需要熊猫,那么仅将其作为此功能的要求是愚蠢的。

我已经将所有建议的解决方案(以及一些新的解决方案)与perfplot (我的一个小项目)进行了比较。

盘点一件

对于足够大的阵列,事实证明

numpy.sum(numpy.array(a) == 1)

比其他解决方案快一点。

在此处输入图片说明

计算所有项目

像以前一样

numpy.bincount(a)

是你想要的。

在此处输入图片说明


复制代码的代码:

from collections import Counter
from collections import defaultdict
import numpy
import operator
import pandas
import perfplot


def counter(a):
    return Counter(a)


def count(a):
    return dict((i, a.count(i)) for i in set(a))


def bincount(a):
    return numpy.bincount(a)


def pandas_value_counts(a):
    return pandas.Series(a).value_counts()


def occur_dict(a):
    d = {}
    for i in a:
        if i in d:
            d[i] = d[i]+1
        else:
            d[i] = 1
    return d


def count_unsorted_list_items(items):
    counts = defaultdict(int)
    for item in items:
        counts[item] += 1
    return dict(counts)


def operator_countof(a):
    return dict((i, operator.countOf(a, i)) for i in set(a))


perfplot.show(
    setup=lambda n: list(numpy.random.randint(0, 100, n)),
    n_range=[2**k for k in range(20)],
    kernels=[
        counter, count, bincount, pandas_value_counts, occur_dict,
        count_unsorted_list_items, operator_countof
        ],
    equality_check=None,
    logx=True,
    logy=True,
    )

2。

from collections import Counter
from collections import defaultdict
import numpy
import operator
import pandas
import perfplot


def counter(a):
    return Counter(a)


def count(a):
    return dict((i, a.count(i)) for i in set(a))


def bincount(a):
    return numpy.bincount(a)


def pandas_value_counts(a):
    return pandas.Series(a).value_counts()


def occur_dict(a):
    d = {}
    for i in a:
        if i in d:
            d[i] = d[i]+1
        else:
            d[i] = 1
    return d


def count_unsorted_list_items(items):
    counts = defaultdict(int)
    for item in items:
        counts[item] += 1
    return dict(counts)


def operator_countof(a):
    return dict((i, operator.countOf(a, i)) for i in set(a))


perfplot.show(
    setup=lambda n: list(numpy.random.randint(0, 100, n)),
    n_range=[2**k for k in range(20)],
    kernels=[
        counter, count, bincount, pandas_value_counts, occur_dict,
        count_unsorted_list_items, operator_countof
        ],
    equality_check=None,
    logx=True,
    logy=True,
    )

如果您想一次计算所有值,可以使用 numpy 数组和bincount快速bincount ,如下所示

import numpy as np
a = np.array([1, 2, 3, 4, 1, 4, 1])
np.bincount(a)

这使

>>> array([0, 3, 1, 1, 2])

如果可以使用pandas ,则可以使用value_counts进行救援。

>>> import pandas as pd
>>> a = [1, 2, 3, 4, 1, 4, 1]
>>> pd.Series(a).value_counts()
1    3
4    2
3    1
2    1
dtype: int64

它还会根据频率自动对结果进行排序。

如果您希望结果在列表列表中,请执行以下操作

>>> pd.Series(a).value_counts().reset_index().values.tolist()
[[1, 3], [4, 2], [3, 1], [2, 1]]

为什么不使用熊猫呢?

import pandas as pd

l = ['a', 'b', 'c', 'd', 'a', 'd', 'a']

# converting the list to a Series and counting the values
my_count = pd.Series(l).value_counts()
my_count

输出:

a    3
d    2
b    1
c    1
dtype: int64

如果要查找特定元素的数量,请说a ,请尝试:

my_count['a']

输出:

3