【50ETF期权】 2. 历史波动率

来源:https://uqer.io/community/share/560493a4f9f06c597565ef03

在本文中,我们将通过量化实验室提供的数据,计算上证50ETF的历史波动率数据

  1. from CAL.PyCAL import *
  2. import numpy as np
  3. import pandas as pd
  4. import matplotlib.pyplot as plt
  5. from matplotlib import rc
  6. rc('mathtext', default='regular')
  7. import seaborn as sns
  8. sns.set_style('white')
  9. import math
  10. from scipy.stats import mstats

50ETF收盘价

  1. # 华夏上证50ETF
  2. secID = '510050.XSHG'
  3. begin = Date(2015, 2, 9)
  4. end = Date.todaysDate()
  5. fields = ['tradeDate', 'closePrice']
  6. etf = DataAPI.MktFunddGet(secID, beginDate=begin.toISO().replace('-', ''), endDate=end.toISO().replace('-', ''), field=fields)
  7. etf['tradeDate'] = pd.to_datetime(etf['tradeDate'])
  8. etf = etf.set_index('tradeDate')
  9. etf.tail(3)
closePrice
tradeDate
2015-09-222.237
2015-09-232.180
2015-09-242.187

1. EWMA模型计算历史波动率

EWMA(Exponentially Weighted Moving Average)指数加权移动平均计算历史波动率:

【50ETF期权】 2. 历史波动率 - 图1

其中

【50ETF期权】 2. 历史波动率 - 图2

上式中的 Sii 天的收盘价,λ 为介于0和1之间的常数。也就是说,在第 n−1 天估算的第 n 天的波动率估计值 σn 由第 n−1 天的波动率估计值 σn−1 和收盘价在最近一天的变化百分比 un−1 决定。

计算周期为 N 天的波动率时, λ 可以取为:

【50ETF期权】 2. 历史波动率 - 图3

  1. def getHistVolatilityEWMA(secID, beginDate, endDate):
  2. cal = Calendar('China.SSE')
  3. spotBeginDate = cal.advanceDate(beginDate,'-520B',BizDayConvention.Preceding)
  4. spotBeginDate = Date(2006, 1, 1)
  5. begin = spotBeginDate.toISO().replace('-', '')
  6. end = endDate.toISO().replace('-', '')
  7. fields = ['tradeDate', 'preClosePrice', 'closePrice', 'settlePrice', 'preSettlePrice']
  8. security = DataAPI.MktFunddGet(secID, beginDate=begin, endDate=end, field=fields)
  9. security['dailyReturn'] = security['closePrice']/security['preClosePrice'] # 日回报率
  10. security['u2'] = (np.log(security['dailyReturn']))**2 # u2为复利形式的日回报率平方
  11. # security['u2'] = (security['dailyReturn'] - 1.0)**2 # u2为日价格变化百分比的平方
  12. security['tradeDate'] = pd.to_datetime(security['tradeDate'])
  13. periods = {'hv1W': 5, 'hv2W': 10, 'hv1M': 21, 'hv2M': 41, 'hv3M': 62, 'hv4M': 83,
  14. 'hv5M': 104, 'hv6M': 124, 'hv9M': 186, 'hv1Y': 249, 'hv2Y': 497}
  15. # 利用pandas中的ewma模型计算波动率
  16. for prd in periods.keys():
  17. # 此处的span实际上就是上面计算波动率公式中lambda表达式中的N
  18. security[prd] = np.round(np.sqrt(pd.ewma(security['u2'], span=periods[prd], adjust=False)), 5)*math.sqrt(252.0)
  19. security = security[security.tradeDate >= beginDate.toISO()]
  20. security = security.set_index('tradeDate')
  21. return security
  1. secID = '510050.XSHG'
  2. start = Date(2015, 2, 9)
  3. end = Date.todaysDate()
  4. hist_HV = getHistVolatilityEWMA(secID, start, end)
  5. hist_HV.tail(2)
preClosePriceclosePricedailyReturnu2hv2Mhv1Whv1Yhv3Mhv4Mhv5Mhv2Yhv1Mhv2Whv6Mhv9M
tradeDate
2015-09-232.2372.1800.9745190.0006660.5113180.3047910.4465500.5232240.5198900.5116350.3797180.4490900.3444770.5022690.472743
2015-09-242.1802.1871.0032110.0000100.4990950.2506580.4448040.5149690.5136990.5067140.3789250.4284530.3124100.4981420.470203
  1. secID = '510050.XSHG'
  2. start = Date(2007, 1, 1)
  3. end = Date.todaysDate()
  4. hist_HV = getHistVolatilityEWMA(secID, start, end)
  5. ## ----- 50ETF历史波动率 -----
  6. fig = plt.figure(figsize=(10,12))
  7. ax = fig.add_subplot(211)
  8. font.set_size(16)
  9. hist_plot = hist_HV[hist_HV.index >= Date(2015,2,9).toISO()]
  10. etf_plot = etf[etf.index >= Date(2015,2,9).toISO()]
  11. lns1 = ax.plot(hist_plot.index, hist_plot.hv1M, '-', label = u'HV(1M)')
  12. lns2 = ax.plot(hist_plot.index, hist_plot.hv2M, '-', label = u'HV(2M)')
  13. ax2 = ax.twinx()
  14. lns3 = ax2.plot(etf_plot.index, etf_plot.closePrice, '-r', label = '50ETF closePrice')
  15. lns = lns1+lns2+lns3
  16. labs = [l.get_label() for l in lns]
  17. ax.legend(lns, labs, loc=2)
  18. ax.grid()
  19. ax.set_xlabel(u"tradeDate")
  20. ax.set_ylabel(r"Historical Volatility")
  21. ax2.set_ylabel(r"closePrice")
  22. ax.set_ylim(0, 0.9)
  23. ax2.set_ylim(1.5, 4)
  24. plt.title('50ETF Historical EWMA Volatility')
  25. ## -----------------------------------
  26. ## ----- 50ETF历史波动率统计数据 -----
  27. # 注意: 该统计数据基于07年以来将近九年的历史波动率得出
  28. ax3 = fig.add_subplot(212)
  29. font.set_size(16)
  30. hist_plot = hist_HV[[u'hv2W', u'hv1M', u'hv2M', u'hv3M', u'hv4M', u'hv5M', u'hv6M', u'hv9M', u'hv1Y']]
  31. # Calculate the quantiles column wise
  32. quantiles = mstats.mquantiles(hist_plot, prob=[0.0, 0.25, 0.5, 0.75, 1.0], axis=0)
  33. labels = ['Minimum', '1st quartile', 'Median', '3rd quartile', 'Maximum']
  34. for i, q in enumerate(quantiles):
  35. ax3.plot(q, label=labels[i])
  36. # 在统计图中标出某一天的波动率
  37. date = Date(2015,8,27)
  38. last_day_HV = hist_plot.ix[date.toDateTime()].T
  39. ax3.plot(last_day_HV.values, 'dr', label=date.toISO())
  40. # 在统计图中标出最近一天的波动率
  41. last_day_HV = hist_plot.tail(1).T
  42. ax3.plot(last_day_HV.values, 'sb', label=Date.fromDateTime(last_day_HV.columns[0]).toISO())
  43. ax3.set_ylabel(r"Volatility")
  44. plt.xticks((0,1,2,3,4,5,6,7,8),(0.5,1,2,3,4,5,6,9,12))
  45. plt.xlabel('Periods(Months)')
  46. plt.legend()
  47. plt.grid()

【50ETF期权】 2. 历史波动率 - 图4

波动率图中,上图表示50ETF收盘价格和历史波动率的走势关系:

  • 显然,短周期波动率对于近期的波动更敏感
  • 收盘价的下跌往往伴随着波动率的上升,两者的负相关性质明显 波动率图中,下图表示50ETF历史波动率的统计数据,图中给出了四分位波动率锥:

  • 8月底时,各个周期历史波动率均处于历史高位

  • 目前,短周期波动率已经有所回落

2. Close to Close 模型计算历史波动率

m 天周期的Close to Close波动率:

【50ETF期权】 2. 历史波动率 - 图5

其中

【50ETF期权】 2. 历史波动率 - 图6

也就是说,在第 n−1 天估算的第 n 天的波动率估计值 σn 由前面 m天的每日收盘价变化百分比 ui 的标准差决定。

  1. ## 计算一段时间标的的历史波动率,返回值包括以下不同周期的波动率:
  2. # 一周,半月,一个月,两个月,三个月,四个月,五个月,半年,九个月,一年,两年
  3. def getHistVolatilityC2C(secID, beginDate, endDate):
  4. cal = Calendar('China.SSE')
  5. spotBeginDate = cal.advanceDate(beginDate,'-520B',BizDayConvention.Preceding)
  6. spotBeginDate = Date(2006, 1, 1)
  7. begin = spotBeginDate.toISO().replace('-', '')
  8. end = endDate.toISO().replace('-', '')
  9. fields = ['tradeDate', 'preClosePrice', 'closePrice', 'settlePrice', 'preSettlePrice']
  10. security = DataAPI.MktFunddGet(secID, beginDate=begin, endDate=end, field=fields)
  11. security['dailyReturn'] = security['closePrice']/security['preClosePrice'] # 日回报率
  12. security['u'] = np.log(security['dailyReturn']) # u2为复利形式的日回报率
  13. security['tradeDate'] = pd.to_datetime(security['tradeDate'])
  14. periods = {'hv1W': 5, 'hv2W': 10, 'hv1M': 21, 'hv2M': 41, 'hv3M': 62, 'hv4M': 83,
  15. 'hv5M': 104, 'hv6M': 124, 'hv9M': 186, 'hv1Y': 249, 'hv2Y': 497}
  16. # 利用方差模型计算波动率
  17. for prd in periods.keys():
  18. security[prd] = np.round(pd.rolling_std(security['u'], window=periods[prd]), 5)*math.sqrt(252.0)
  19. security = security[security.tradeDate >= beginDate.toISO()]
  20. security = security.set_index('tradeDate')
  21. return security
  1. secID = '510050.XSHG'
  2. start = Date(2007, 1, 1)
  3. end = Date.todaysDate()
  4. hist_HV = getHistVolatilityC2C(secID, start, end)
  5. ## ----- 50ETF历史波动率 -----
  6. fig = plt.figure(figsize=(10,12))
  7. ax = fig.add_subplot(211)
  8. font.set_size(16)
  9. hist_plot = hist_HV[hist_HV.index >= Date(2015,2,9).toISO()]
  10. etf_plot = etf[etf.index >= Date(2015,2,9).toISO()]
  11. lns1 = ax.plot(hist_plot.index, hist_plot.hv1M, '-', label = u'HV(1M)')
  12. lns2 = ax.plot(hist_plot.index, hist_plot.hv2M, '-', label = u'HV(2M)')
  13. ax2 = ax.twinx()
  14. lns3 = ax2.plot(etf_plot.index, etf_plot.closePrice, '-r', label = '50ETF closePrice')
  15. lns = lns1+lns2+lns3
  16. labs = [l.get_label() for l in lns]
  17. ax.legend(lns, labs, loc=2)
  18. ax.grid()
  19. ax.set_xlabel(u"tradeDate")
  20. ax.set_ylabel(r"Historical Volatility")
  21. ax2.set_ylabel(r"closePrice")
  22. ax.set_ylim(0, 0.9)
  23. ax2.set_ylim(1.5, 4)
  24. plt.title('50ETF Historical Close-to-Close Volatility')
  25. ## -----------------------------------
  26. ## ----- 50ETF历史波动率统计数据 -----
  27. # 注意: 该统计数据基于07年以来将近九年的历史波动率得出
  28. ax3 = fig.add_subplot(212)
  29. font.set_size(16)
  30. hist_plot = hist_HV[[u'hv2W', u'hv1M', u'hv2M', u'hv3M', u'hv4M', u'hv5M', u'hv6M', u'hv9M', u'hv1Y']]
  31. # Calculate the quantiles column wise
  32. quantiles = mstats.mquantiles(hist_plot, prob=[0.0, 0.25, 0.5, 0.75, 1.0], axis=0)
  33. labels = ['Minimum', '1st quartile', 'Median', '3rd quartile', 'Maximum']
  34. for i, q in enumerate(quantiles):
  35. ax3.plot(q, label=labels[i])
  36. # 在统计图中标出某一天的波动率
  37. date = Date(2015,8,27)
  38. last_day_HV = hist_plot.ix[date.toDateTime()].T
  39. ax3.plot(last_day_HV.values, 'dr', label=date.toISO())
  40. # 在统计图中标出最近一天的波动率
  41. last_day_HV = hist_plot.tail(1).T
  42. ax3.plot(last_day_HV.values, 'sb', label=Date.fromDateTime(last_day_HV.columns[0]).toISO())
  43. ax3.set_ylabel(r"Volatility")
  44. plt.xticks((0,1,2,3,4,5,6,7,8),(0.5,1,2,3,4,5,6,9,12))
  45. plt.xlabel('Periods(Months)')
  46. plt.legend()
  47. plt.grid()

【50ETF期权】 2. 历史波动率 - 图7

波动率图中,上图表示50ETF收盘价格和历史波动率的走势关系:

  • 显然,短周期波动率对于近期的波动更敏感
  • 收盘价的下跌往往伴随着波动率的上升,两者的负相关性质明显 波动率图中,下图表示50ETF历史波动率的统计数据,图中给出了四分位波动率锥:

  • 8月底时,各个周期历史波动率均处于历史高位

  • 目前,短周期波动率已经有所回落 明显地,相对于EWMA计算的历史波动率,Close to Close波动率对于最近价格波动反应比较迟钝